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There exists a variety of theories of the glass transition and many more numerical models. But because the
models need built-in complexity to prevent crystallization, comparisons with theory can be difficult. We study
the dynamics of a deeply supersaturated monodisperse four-dimensional �4D� hard-sphere fluid, which has no
such complexity, but whose strong intrinsic geometrical frustration inhibits crystallization, even when deeply
supersaturated. As an application, we compare its behavior to the mode-coupling theory �MCT� of glass
formation. We find MCT to describe this system better than any other structural glass formers in lower
dimensions. The reduction in dynamical heterogeneity in 4D suggested by a milder violation of the Stokes-
Einstein relation could explain the agreement. These results are consistent with a mean-field scenario of the
glass transition.
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Though the conversation started generations ago, scien-
tists still debate the nature of the glass transition �1�. The
multiplicity of competing frameworks even led some to de-
clare that glass theories are more numerous than glass theo-
rists �2�. To be fair, a great deal of progress toward a micro-
scopic description has been made over the last couple of
decades, but many fundamental questions remain unan-
swered. The intrinsic complexity of many glass-forming sys-
tems hinders progress. To avoid interference from precipi-
tous crystallization, simulated fluids require built-in
complexity: bidisperse �3,4�, polydisperse �5� or multicom-
ponent �6� mixtures, anisotropic �7� or frustrated �8� pair
interactions, etc. The situation is even more intricate in ex-
periments, where good glass formers are, with only one re-
ported exception �9�, molecular liquids, polymer melts, or
metallic alloys. Quantitative comparisons between the micro-
scopic theories and these systems are formidably challeng-
ing, which impedes assessing the validity and limitations of
the predictions �10�. A plain glass former, i.e., a monatomic
one-component liquid with an interaction potential as simple
as possible, would thus be greatly beneficial for the field’s
progress.

In this Rapid Communication, we report numerical simu-
lations of a surprising glass former made of monodisperse
four-dimensional �4D� hard spheres �HSs�. Monodisperse HS
have a single nontrivial thermodynamic parameter, the vol-
ume fraction �, which makes them the simplest model of
isotropic fluids and crystals. Unlike in two-dimensional �2D�
and three-dimensional �3D�, monodisperse HS in 4D and
higher dimensions are strongly geometrically frustrated with
respect to the crystal �11�. The simplex-based liquid structure
is geometrically distinct from the crystalline order, which
inhibits nucleation and facilitates glass formation �12,13�.
Compression studies of 4D HS suggest that the structural
relaxation-time scale becomes longer than the slowest acces-
sible quenching rate around ��0.40–0.41 �12,14�. A rough
estimate gives the nucleation rate of reasonable system sizes
for simulations to be eight to ten orders of magnitude slower
than the structural relaxation-time scale �13,15�. In monodis-
perse 3D HS, in contrast, at ��0.54 multiple crystal nuclei

form simultaneously on the structural relaxation-time scale,
while the onset of slow dynamics is generally agreed to be
��0.58. Bidisperse or polydisperse HS are thus used to
study glass formation �e.g., �4,5��. We perform molecular-
dynamics simulations with the event-driven package of Ref.
�12� in a system of N=4096 particles, in order to examine
the 4D system’s glass-forming properties �16�. We expect
finite-size effects to be small in this regime, as is the case at
similar supersaturations in 3D for N=512 �17�. The structure
factor S�k� of the deeply supersaturated fluid remains liquid
like at all densities, but the complete absence of crystallinity
is also checked by an order parameter developed to detect
nucleation �13�. Dynamically, the two-step growth of the
mean-square displacement �MSD� ��ri�t�−ri�0��2�, where
ri�t� is the position of the ith particle, shows a lengthening
caging plateau with density, a signature of structural glass
formers �Fig. 1�.

As an application of this simple model glass former, we
consider the role of dimensionality in glass formation, which
is a subject of considerable theoretical discussion �14,18,19�.
The abrupt dynamical slowdown near the glass transition
suggests the presence of a kinetic and/or a hidden thermody-
namic singularity. The most direct evidence for such a sin-
gularity is the growth of spatiotemporal fluctuations on the
structural relaxation-time scale, which results in fast and
slow moving regions in supercooled liquids. This dynamical
heterogeneity is typically monitored through four-point cor-
relation functions �20� and Stokes-Einstein �SE� relationship
violations �1,21�. As for conventional continuous phase tran-
sitions, the impact of these fluctuations should be reduced in
higher dimensions as the system becomes more mean-field-
like. Comparing systems of different dimensionality should
allow to better understand the glass transition as a critical
phenomenon and to test this mean-field scenario. A first at-
tempt in this direction was recently made by Eaves and Re-
ichman for a 4D binary Lennard-Jones �BLJ� model system
�22�, but the complication of identifying the dimensional cor-
respondence between BLJ systems makes quantitative com-
parisons difficult.

Insights into the mean-field scenario of the glass transition
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are gained by a mode-coupling theory �MCT� analysis of the
dynamical results. A mean-field description of the thermody-
namic “ideal” glass transition based on the replica theory
suggests that HS undergo a dynamical transition at �c, before
reaching the thermodynamic glass transition of the one-step
replica symmetry breaking at �K��c �14,23�. This decou-
pling between dynamical and thermodynamic anomalies is
demonstrated by simulation �24�. MCT is conjectured to be
the dynamical counterpart of this approach below �c, be-
cause its mathematical structure is equivalent to the dynami-
cal equations of a mean-field p-spin-glass model �25� for
which the relation between the dynamical and the thermody-
namic glass transitions is rigorously established �26�. Though
contentious, MCT is one of the most successful theories of
the glass transition. It uses static structural information, such
as the radial distribution function g�r�, to provide first-
principles predictions of the slow dynamics of fluids before
their dynamical arrest �27�. At mild supercooling it qualita-
tively captures the onset of the two-step decay of time-
correlation functions and the algebraic relaxation of the in-
termediate time regime. On approaching �c it predicts a
power-law divergence of the structural relaxation time in-
stead of the well-known Vogel-Fulcher-Tammann behavior
�1�. This power law describes simulation and experimental
observations fairly well for a range of densities below the �c
fitted from the dynamical data �27�, but the divergence at �c
is rounded off due to activated events, which the theory does
not capture. A failing of MCT is that it foretells a nonergodic
freezing of the dynamics at a much lower �c �or higher tem-
perature Tc for thermal systems� than the experimental and
simulation glass transition point �g �or Tg� �1�. Moreover the
nonergodic freezing point obtained by fitting the simulation
data with the MCT power law are systematically lower than
what the theoretical predicts �28,29�. MCT also lacks an ex-
planation for the violation of the SE relation, which is mostly

attributed to strong dynamical heterogeneity near the glass
transition and is missing in the theory �30�. Yet if MCT is
indeed a dynamical mean-field theory, a reduction in the de-
gree of heterogeneous dynamics by increasing dimensional-
ity should improve the agreement with simulation results.

MCT is expressed as a series of nonlinear integrodiffer-
ential equations for correlation functions such as the interme-
diate scattering function F�k , t�=N−1���k�t���k

��0��, where
��k�t� is the density fluctuation in reciprocal space. Gener-
alization of the theory to 4D straightforwardly gives �31�

F̈�k,t� + �k
2F�k,t� + 	

0

t

dsM�k,t − s�Ḟ�k,s� = 0, �1�

where �k
2
kBTk2 /mS�k�, S�k�
F�k , t=0� is the static struc-

ture factor, and M�k , t� is the memory kernel. M�k , t� can be
further decomposed into fast and slow components M�k , t�
=Mfast�k , t�+MMCT�k , t� with

MMCT�k,t� = 	
0

�

dq	
�q−k�

�q+k�

dpVk�q,p�F�q,t�F�p,t� , �2�

where Vk�q , p�
��4k2p2− f+
2�f+c�q�+ f−c�p��2 /16�k4, c�k�


�1−1 /S�k� /� is the direct correlation function, �=N /V is
the number density, and f�
k2� �q2− p2�. Binary collisions
dominate the fast decaying part of the memory kernel
Mfast�k , t�, which is conventionally determined by fitting
simulation data �28�. Here, the analysis is done for the self
part of the intermediate scattering function Fs�k , t�

�eik·�ri�t�−ri�0��� for which the MCT expression is similar to
Eq. �2� �31�. Because the MCT analysis is very sensitive to
the details of the S�k� input, particular care is taken to inter-
polate and extrapolate �to larger k� the simulation data to a
continuous functional form. We extend the simulated g�r� for
distances larger than half the simulation box with a damped
oscillatory function. The Fourier transform of g�r� is in good
agreement with the direct computation of S�k�. We compute
�see Fig. 1� Fs�k , t� for several wave vectors, one of which
�k=8.3� is close to the first peak of the structure factor and
thus not too far from the dominant microscopic caging and
relaxation length scales �32�. The decorrelation of density
fluctuations displays the characteristic caging plateau and al-
lows for the extraction of the structural relaxation time 	
,
defined as Fs�k ,	
�=1 /e.

MCT predicts �Eq. �1�� that both 	
 and the diffusion
coefficient D scale with the same power-law exponent � and
critical density �c, i.e., 	


−1 ,D� ��c−���, with �MCT=2.8 and
�c

MCT=0.379. In Fig. 2, we fit the simulation data to this form
by fixing �MCT and leaving �c free. All the data except for
the densest system follow a power law with �c,D

sim =0.407 and
�c,	


sim =0.406 for all wave vectors. The discrepancy between
�c,D

sim and �c,	


sim is smaller �0.2%� than for 3D HS �0.5%� �4�,
and the concordance with �c

MCT slightly improves. It is inter-
esting to note that �c

sim is very close to the extrapolated dy-
namical arrest point independently obtained at very slow
compression rates �12,14�. For consistency check, we also fit
� while fixing �c

sim=0.406, which gives �D
sim=2.4 and �	


sim

=2.7 for all wave vectors. In contrast, for 3D BLJ �6,33�,
which is the best characterized system, �D

sim�1.8 and �	


sim

k = 4.2

k = 8.3 k = 11.9

(a)

(b)

(b) (b)

FIG. 1. �Color online� �a� MSD and �b� Fs�k , t� at �=0.370,
0.386, 0.389, 0.392, 0.395, 0.398, 0.401, 0.404, and 0.407, from left
to right. Solid lines are MCT fits using  as control parameter �see
text�. At the highest density 	
 deviates from the power-law scaling
of Fig. 2.
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�2.3, whereas �MCT=2.46. Another notable feature is that
the power law fits over almost four time decades, reaching
densities where 
1−� /�c

sim is less than 0.5% �Fig. 2�. In
2D and 3D systems the structural relaxation-time scale fol-
low a power law for only two or at most three decades
�5,6,33–35�, before the theoretical description breaks down
because of activated processes.

We also consider how well MCT describes the full MSD
and Fs�k , t� curves, using  as input parameter to scale out
the �c dependence �Fig. 1�. To tease out the long-time MCT
behavior from Eq. �1�, the short-time Fs�k , t� decay �up to t
�100� is imported from the simulation curves. This proce-
dure is equivalent to, but more direct than the standard fit of
Mfast�k , t� from simulation �28�. The concordance between
simulation and calculated Fs�k , t� is almost perfect for k
=8.3 and 11.9, up to densities where 	
 deviates from the
power-law behavior and MCT foretells the nonergodic tran-
sition. The calculated MSD also matches the simulated
curves quite well, except for �=0.404 and above. The cor-
respondence between simulation and MCT is noticeably bet-
ter than for lower-dimensional systems, where for every re-
laxation curve both �c and k must be rescaled, in order to
achieve a reasonable collapse �36�. Besides the power-law
scaling, MCT successfully describes several other features in
3D, such as the time-temperature superposition, the von-
Schweidler law at the beta relaxation regimes, the
k-dependence of the plateau height �the nonergodic param-
eter�, the exponents of stretched exponential relaxation at the
alpha relaxation regime ��k�, and the beta relaxation expo-
nent b �27�. The concordance between theory and simulation
for all of these features is at least as good for 4D HS as for
3D systems.

The quantitative improvement of MCT predictions in 4D
over 3D suggests that fluctuations are less important in
higher dimensions. We analyze the system’s dynamical het-
erogeneity through the SE relation to verify this hypothesis.
Figure 3 shows D	
 for the full range of densities explored
along with the corresponding 3D HS results �4,5�. In order to
put the different dimensions on an equal footing, we plot D	


against the diffusion coefficient D. The SE relation holds for
diffusivities over a decade smaller in 4D than in 3D �up to
�1%�, which is slightly before D and 	
 start deviating
from the MCT-predicted power law in Fig. 2. If a similar

degree of polydispersity were used in 4D as in 3D we expect
the SE violation to be suppressed even more �37�. The sup-
pression of the SE relation violation and the better agreement
of all available dynamical observables with MCT predictions
suggest that 4D HS are dynamically more mean-field-like
than the 2D and 3D equivalents. The improvement of the
agreement with MCT is however incremental, which hints
that if an upper critical dimension dc for the glass transition
exists, it is larger than four. This result is consistent with
general theoretical arguments that give dc=8 �18,38�. Biroli
et al. also obtained that the SE relation violation should scale
as D	
�d/4−2 �18�. The growth in Fig. 3 is not inconsistent
with this scaling, but the SE relation violation for the range
of densities we explore is too mild to be conclusive about the
exponent. A more direct measure of dynamical heterogeneity
would be to compute the four-point correlation function
�4�t�, but the lack of statistical accuracy and the relatively
small system sizes prevent us from reporting the results here.
We will consider �4�t� in future studies.

The 4D monodisperse HS fluid we study is quite conve-
nient to examine the glass transition. Its simplicity and slow
nucleation rate allow high-accuracy comparisons of its glass-
forming properties with microscopic theories. The agreement
of the system with MCT, which is broader than for any
lower-dimensional equivalents, and the strong suppression of
SE relation violation are consistent with the dynamical
mean-field scenario of the glass transition �14�. The results
also suggest that 4D is still below the upper critical dimen-
sion, if it exists, because the fluctuations due to activated
processes round off the sharp dynamical singularity. Given
that even the mean-field picture has not been rigorously es-
tablished for the structural glass transition, the study of
clean, higher-dimensional systems such as 4D HS is likely to
play a crucial role in assessing the validity and limitations of
the various glass theories.
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FIG. 2. Power-law fit of D ��� and 	

−1 for k=8.3 ���. Inset:

D1/� and 	

−1/� for k=8.3, 7.5, and 4.2, from top to bottom, scale

linearly with a shared intersection point.

FIG. 3. �Color online� Violation of the SE relation in 4D mono-
disperse and 3D bidisperse �4� and polydisperse �5� HS, where D	


is normalized by its low-density �D	
�ref value. MCT predicts only
a very small violation of the SE relation for both 3D and 4D
systems.
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